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A computational analysis of the hard direction magnetization isotherms of polycrystalline materials with uniaxial symmetry, 
taking into account the angular statistical distribution of grain axis, is performed. By means of numerical method calculation 
the practical limits of the analytical description are established. The method determines by analytical way the 
magnetocrystalline anisotropy constants K1 and K2 and takes into account the misalignment degree of the grain c axis in 
magnetically oriented polycrystalline materials. By means of computational simulation the influence of theses parameters on 
the hard direction magnetization isotherms is analyzed. The results are used to define the magnetocrystalline anisotropy 
analysis of some R-T12 intermetallic compound. 
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1. Introduction 
 
The magnetocrystalline anisotropy is an important 

intrinsic property of hard magnetic materials, witch 
strongly influence their coercivity. With the singular point 
detection (SPD) method [1] it is possible to determine more 
exactly the anisotropy field HA and consequently the total 
anisotropy constant ...K3+K2+K=K 321  with 

2/MHμ=K SA0 , where and SM  is the spontaneous 
magnetization. The second (K1) and the forth (K2) 
anisotropy constants of single crystal, can be determined by 
the classical Sucksmith-Thompson method [2]. Usually this 
method is applied to polycrystalline materials [3] using fine 
particles (≤ 50µm), oriented in a constant magnetic field (~ 
1-2 T) and fixed in epoxy resin. However the values of K1 
and K2 for these materials strongly depend of the degree of 
misalignment of the easy magnetization axis (EMA) of the 
quasi monocrystalline grains with respect to the orientation 
of the magnetic field. Durst and Kronmüller [4] have 
proposed a statistical model for the interpretation of hard 
direction magnetization isotherms, taken into account a 
discrete distribution of EMA with respect to the aligned 
direction (AD) of the grains. The application of this model 
supposed the determination of the distribution function of 
the EMA orientation. In uniaxial magnetic materials the 
EMA is parallel to the c axis and the distribution function of 
the EMA orientation follows the texture function. In order 
to determine the distribution function, the classical 
experimental procedure is the x-ray diffraction method [5]. 
Alternative direct magnetic methods [4, 6-8] were used. In 
the analytical methods [9-12] the misalignment of the 
grains is described a priori by means of continuous 
statistical Gaussian distribution with the assumption of an 

assembly of non-interacting particles. The variance of the 
Gaussian function reflects the misalignment degree of 
EMA. 

In the present paper we present an accessible version of 
the analytical method [9] to determine the 
magnetocrystalline parameters of polycrystalline samples 
using a statistical model [4] developed with the 
computation facilities. The method has been applied to the 
simulation of the hard magnetization isotherms of 
polycrystalline GdFe11-xSixTi with ThMn12 structure and 
uniaxial anisotropy. 

 
 
2. Theoretical background 
 
For single crystal with axial symmetry in an external 

magnetic field, the total magnetocrystalline and 
magnetostatic free energy density, is given by the well 
known expression 

 
)-cos(HM-...sinKsinKF S0
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1 θψμ+θ+θ==  (1) 

 
where, θ is the angle between the SM

r
 direction and EMA 

(parallel to the c axis) and ψ  is the angle between the EMA 

and the internal magnetic field H
r

.  
MNHH ext

rrr
−= , where N is the demagnetization factor 

and extH
r

is the applied field. MS is considered constant, by 
neglecting the magnetic field influence on the atom 
magnetic moments and the canting effect. 

The preferential direction of the magnetization can be 
determined by minimizing the total free energy density with 



3312                                                             C. B. Cizmas, L. Bessais, C. Djega-Mariadassou 

 
respect to the θ variable. The equilibrium condition leads to  

 
0)sin(HMcossinK4cossinK2 S0

3
21 =θ−Ψμ−θθ+θθ     (2) 

 
The component of the magnetization parallel to the 

magnetic field can be written as  
 

)cos(MM S θ−Ψ=   (3) 
 

The Equations (2) and (3) are the parametric equations 
of the magnetization dependence on H for a single crystal. 
In this case, from hard direction magnetization isotherms 
(Ψ=π/2) the Sucksmith - Thompson plot [2] leads directly 
to the anisotropy constants K1 and K2. 

In the case of polycrystalline powder, aligned and fixed 
along AD, one must take into account the misalignment of 
the c axis or the EMA of grains with respect to AD. The 
misalignment is described by means of a statistical 
distribution around AD of the angles between the c axis and 
AD defined as θC [4]. In the assumption of non-interacting 
particles a Gaussian type continuous distribution over the 
θC angles can be used [6-12]. Consequently the distribution 
function is written as 
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where θC0 is the variance of the Gaussian function, which 
reflects the degree of misalignment. In this assumption, the 
parametric equations of the magnetization M=f(H) become 
 

( ) 0cossinsincosHM

cossinK4cossinK2

S0

3
21

=Ψ⋅θ−Ψ⋅θμ−

θθ+θθ
 (5) 

 
 

( )Ψ⋅θ+Ψ⋅θ= sinsincoscosMM S . (6) 
 

The mean values of ψsin  and ψcos  were computed 

over ψ = π/2 – θC angle with the relations Ccossin θ=ψ  

and Csincos θ=ψ  , using the distribution function (4). 
Eliminating the θ parameter from Equations (5) and (6) we 
can obtain the implicit form μ0H = f(M) of the expected 
relation M=f(H), as a function of five parameters MS, K1, 
K2, ψsin  and ψcos : 
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The implicit function (7) of the magnetization M 

dependence versus H can simulate the hard magnetization 
isotherms by means of computational methods.  

First, we have analyzed the theoretical limits of 
equations (7) and (8) for the simulation of hard 
magnetization isotherms of uniaxial polycrystalline 
materials. In order to establish the limits we have made an 
analysis of “μ0H”, “tan θ” and “θ” dependence on the 
reduced magnetization (M/MS), using the numerical 
calculation method. As example, the result of this analysis 
for selected values of K1=1MJ/m3, K2=0.1MJ/m3 and             
θC0= 60 is presented in Fig. 1. 

This analysis shows three analytical critical points.  
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Fig. 1. The reduced magnetization dependence of “μ0H”    
“tan θ”, “θ” and the three analytical critical points                 
                   (M/MS)1, (M/MS)2 and (M/MS)3. 
 
 
i) The first critical point is observed for small values 

of the reduced magnetization at ( )1SS M/MM/M = , 
corresponding to the condition 0tan =θ  ( 0=θ ). The 
condition 0tan ≥θ (0 ≤ θ < 90o) can be obtained only if 

( )1SS M/MM/M ≥ . From equation (6), at θ =0 results 

( ) ( )( ) ψ== cosM/0MM/M S1S . 
ii) The second critical point at ( )2SM/M  corresponds 

to the asymptotic behaviour of ( )S0 M/MfHB =μ=  (eq.7) 

at ( )ψψ=θ − cos/sintan 1
max , then ∞→μ H0 . This 

condition suppose that the eligible range of 
( )HfM/M 0S μ=  values is limited at high values of reduced 

magnetization by the condition maxθ<θ  and consequently 
100%)(M/MM/M 2SS <≤ .The third critical point at 

( )3SM/M  corresponds to the asymptotic behaviour of 
 )=θ Sf(M/Mtan  (Equation 8), because for 
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( ) ψ= sinM/M 3S ,  ∞→θtan  and 090=θ . For 00 ≥Cθ , 
( ) ( )2S3S M/MM/M ≥ . This critical point is not important, 
because it is excluded by the second critical point. 

Concluding, for the simulation of the hard 
magnetization isotherms of axial polycrystalline textured 
materials the limits of eligible range are max0 θ<θ<  
corresponding to the condition 
( ) ( )2SS1 M/M/MMM/M ≤≤ . As an example, in Fig.2, the 
eligible range for the simulation of hard magnetization 
isotherms is represented by the plot of the reduced 
magnetization M/MS versus variance θC0, for K1 = 1.0 
MJ/m3 and K2 = 0.1 MJ/m3. 

The second and more important application of the 
parametric Equations (7) and (8) is the fitting possibility of 
the hard magnetization isotherms, in order to determine the 
magnetic anisotropy constants. For this application it is 
important to outline that the two fitting parameters, ψsin  

and ψcos , are not independent, because they depend of the 
variance θC0. In order to eliminate this difficulty we have 
made the numerical computation of ψsin  and ψcos  
values. By least square numerical method we have given a 
very accurate linear dependence (correlation coefficient R 
= 0.99996 and standard deviation SD = 3.6·10-4): 

 
( ) ( )22

sin0.7655-0.7665cos ψ=ψ   (9) 
 

Using this relation it is possible to eliminate as an 
example the ψcos  parameter and to use only one 

parameter, ψsin . It is possible to reduce by this way the 
fitting parameters of equations (7) at only four independent 
parameters: K1, K2, MS and ψsin = f(θC0). On the other 
hand, the MS is determined from the easy magnetization 
isotherms [8]. For the determination of K1, K2 and ψsin  
parameters we can use the least square numerical method. It 
can determine the variance θC0 on the basis of the computed 
values of ( )0Cfsin θ=ψ .  
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Fig. 2. An illustration of θC influence on the limits of 
eligible range for hard magnetic isotherms simulation. 

Finally, can be given the anisotropy field with the well 
known relation 
 

( ) S21A0 M/K2K2H +=μ .  (10) 
 
 
3. Results of numerical simulation  
 
With these assumptions presented in the previous 

section, we have performed the numerical simulation of the 
hard direction magnetization isotherms for various values 
of 0Cθ , K1 and K2. For this simulation we have chosen the 
typical anisotropy constants for uniaxial anisotropy: 

0K1 > , 0K2 >  or 0K2 <  but 21 K2K >  with different 
values of θC0. The obtained results for the first quadrant of 
the M/MS - μ0H representation are presented in Figure 3. 
According to relation (7) a strong correlation between 
M/MS and the θ angle is expected. In order to illustrate this 
correlation we have performed the numerical simulation of 
the influence of applied external magnetic field μ0H on the 
value of θ. The dependence of θ on μ0H, for various values 
of variance 0Cθ , K1 and K2 is reported in Figure 4. The 
results of these simulations suggest the following remarks.  

• The reduced hard axis initial magnetization, 
( )( )SM/0M  strongly depends on 0Cθ  (Fig. 3-a) according 

to Reference [7]. Only for the ideal case characterized by 
00C =θ , it results ( )( ) 0M/0M S = . In this case it is very 

simple to determine also the anisotropy field μ0HA using a 
graphical method and applying the condition 

( )( ) %100M/HM SA =  (Fig. 3-a). On the contrary, for 
00C ≠θ  it results ( )( ) 0M/0M S ≠ . An asymptotically 

approach of M/MS to the values 100% is observed. The 
evaluation of the anisotropy field μ0HA using a graphical 
method is very difficult and practically impossible. It is 
possible to obtain satisfactory value of μ0HA for 
polycrystalline samples only by analytical methods with 
Equation (10). For this purpose one can use the 
magnetocrystalline anisotropy constants Ki values, obtains 
by fitting of the hard direction magnetization isotherms and 
the saturation magnetization MS obtained by fitting the easy 
direction magnetization isotherms. In the Fig. 4-a, we 
present the dependence of θ on the applied magnetic field 
for different values of the variance 0Cθ . 

• For constant values of 0Cθ , the initial value of the 
reduced magnetization along the hard axis remains also 
constant, and independent of the anisotropy constants K1 
and K2. However, these constants determine the shape of 
the hard magnetization isotherms. The anisotropy constant 
K1 has a greater influence on the shape of hard magnetic 
isotherms (Fig. 3-b). This parameter changes not only the 
initial slope, of the hard magnetization isotherm at low 
magnetic field according to [12], but also the rate of 
asymptotical approach to saturation at high magnetic field, 
in correlation with the dependence θ=f(μ0H) (Figure 4-b). 
This parameter changes not only the initial slope, of the 
hard magnetization isotherm at low magnetic field 
according to [12], but also the rate of asymptotical 
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approach to saturation at high magnetic field, in correlation 
with the dependence θ=f(μ0H) (Fig. 4-b). 

•  
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Fig. 3. The numerical simulation of hard magnetic    

isotherms for various values of the parameters 
                            a) θC0, b) K1 and c) K2. 

 
 

• The K2 anisotropy constant changes the shape of 
the isotherms only in the vicinity of the anisotropy field 

A0Hμ  (Fig. 3-c), in correlation with the θ=f(μ0H) 
dependence (Fig. 4-c).  

The influence of this parameter on the shape of the 
hard direction magnetization isotherms at low and high 
magnetic field is negligible. 
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Fig. 4. The numerical simulation of the orientation θ angle 
between sM

r
and B for various values of parameters a) 

θC0, b) K1 and c) K2 
 

 
4. Experimental results analysis 
 
We present in this section an application of the method 

for the analysis of the magnetocrystalline anisotropy in 
GdFe11-xSixTi (0 ≤ x ≤ 2). The polycrystalline compounds 
were prepared by induction melting [13]. Both the crystal 
structure and the type of anisotropy were verified by X-ray 
diffraction (XRD) using a Brucker Cu-Kα diffractometer. 
The XRD patterns on random powder refined with the 
FULPROF computing code, based on the Rietveld method, 
shows the axial tetragonal I4/mmm structure of ThMn12 
type. The XRD patterns on magnetically oriented powder 
are relevant of a strong uniaxial anisotropy with EMA 



Critical analysis of the statistical method for the magnetocrystalline anisotropy constants determination...                     3315 
 
parallel to c axis.  

The isotherm magnetization data on magnetically 
aligned powders at 4.5K were obtained with SQUID 
magnetometer in an external magnetic field up to 5.5T            
(Fig. 5). 
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Fig. 5. Hard direction magnetization isotherms (solid 
symbols) of GdFe11-xSixTi compounds at 4.5K compared 
with easy direction magnetization for x=0 (open square).             
         The solid lines represent the calculated data 

 
 
Fig. 6. Influence of Si content on the magnetocrystalline 
anisotropy constants K1 (□), K2 (Δ) and on the anisotropy  
     field μ0HA (●) of GdFe11-xSixTi compounds at 4.5 K 
 
 
The parameters K1, K2, Ms, and sin ψ  depending of 

the misaligned θC0 parameter were determined from the fit 
of M⊥(H) data with the parametric Equations (7) and (8), 
applying least square numerical method for 0.5T ≤ μ0H ≤ 
5.5T, in the range of a magnetization process by coherent 
rotations. The anisotropy field μ0HA was determined with 
Equation (10). The values of K1, K2 and μ0HA are presented 
versus Si content in Fig. 6. The analysis of their 
composition dependence shows that the Si substitution for 
Fe in 8f and 8j sites changes the crystal field parameters and 
consecutively the anisotropy constant K1, K2. K1 decreases 
from 2.16MJ/m3 for x=0 to 1.67MJ/m3 for x=2. On the 

contrary, K2 increases with Si content from 0.15MJ/m3 at 
x=0 to 0.28MJ/m3 at x=2. 

The composition dependence of the anisotropy field 
μ0HA is more complex as is results from competitive 
changes of the magnetocrystalline constants with the Fe 
substitution for Si. It increases from 6.0T at x=0, up to 7.4T 
at x=2, with a maximum 8.0T around x=1.5.  

 
 
5. Conclusions 
 
Using the computation facility, the hard magnetization 

isotherms of polycrystalline magnetically textured samples 
were analyzed. In order to describe the misalignment of the 
easy magnetization axis of different grains with respect to 
the aligned direction, we have applied the statistical model 
in the assumption of non interacting particles. The 
theoretical limits of application of the method where 
analyzed by means of numerical calculation method. These 
limits are described by means of eligible range values of the 
θ angle between SM

r
 and EMA, 0

max 90≤≤0 <θθ .  
The numerical simulation of hard magnetization 

isotherms shows that the misaligned degree described by 
0Cθ  have a strong influence on the initial hard 

magnetization, ( )( )SM/0M  which increases with 0Cθ . The 
anisotropy constant K1 changes the initial slope of the hard 
magnetization isotherm at low magnetic field and the rate 
of asymptotical approach to saturation at high magnetic 
field. The anisotropy constant K2 changes the shape of the 
isotherms only in the vicinity of the anisotropy field value. 

This analytical method offers the possibility to fit the 
hard magnetization isotherms by least square numerical 
method. In order to determine the magnetocrystalline 
parameters the very simple way of reduction of the fitting 
parameters to three independent parameters 21 K,K  and 

0Cθ  is proposed. The method was successfully applied for 
the determination with a good accuracy of the 
magnetocrystalline parameters of intermetallic 
GdFe11-xSixTi. The misaligned degree and the composition 
dependence of K1, K2 and μ0HA at 4.5K have been 
determined. 
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